

10 ~ 350mA Single/Dual channel LED Driver

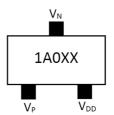
Features

- The easiest used linear constant current LED driver
- 10mA~350mA, single channel constant current regulator
- No external current setting resistor is needed
- 3V ~ 24V wide supply voltage range
- Very low dropout voltage
- Less than ±5% Chip to Chip current skew
- 3kHz PWM dimming support
- Less than 1%/V load (or line) regulation
- 130°C ~160°C junction temperature current ramp down thermal protect
- SOT23-3/SOT89-3 green package

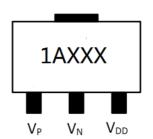
Product Description

NU501 is a simple general-purpose current regulation component that can be easily used in various LED lighting applications. With the excellent load/line regulation and minimized chip current skew, NU501 keep LED's current very stable even when power or load fluctuate in a wide range and make light intensity very uniform in large area of LED light source.

Except power supply function, the $V_{\rm DD}$ pin of NU501 is output enable (OE) also, and can be used in digital PWM controlled circuit to achieve more precise current adjusting in gray level applications.


NU501-1AXXX is a series of products, the packaging surface printing is 1AXXX; 1 indicates NU501 series, A indicates version, and XXX indicates current (mA). For example, 1A025 is 25mA. The 1A150 is 150mA.

Applications


- General LED lighting
- Commercial lighting
- LED torch / flashlight
- RGB lighting

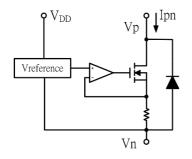
Package Type

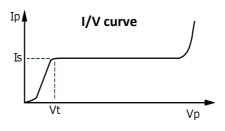
• SOT 23-3L (output current≤ 60mA)

• SOT89-3L (output current ≥60mA)

Terminal Description

Pin name	Function
V_{DD}	Power supply
V_{P}	Current in
$V_{\rm N}$	Current out


Package & current


Package	SOT23-3L		SOT	39-3L
current	1A010	1A040	1A060	1A240
	1A015	1A045	1A080	1A280
	1A020	1A050	1A090	1A300
	1A025	1A055	1A100	1A320
	1A030	1A060	1A120	1A350
	1A035		1A150	

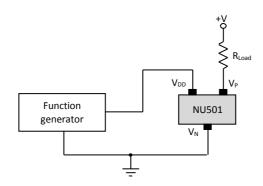
PS:Before you issue your P.O., please contact your agent or NUMEN technology to make sure the type of output current is available.

-1- Ver. 11.06

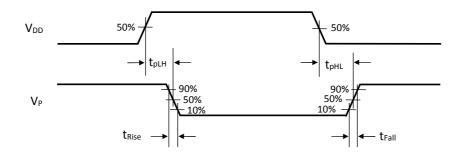
Block Diagram and IV characteristic

Maximum Ratings (T = 25°C)

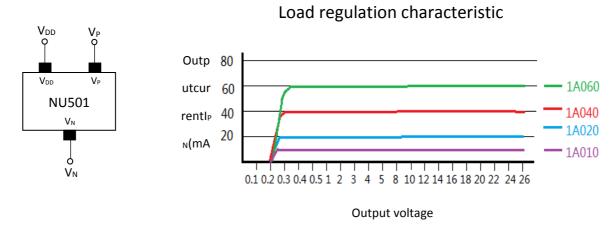
Characteristic	Symbol		Rating	Unit	
Supply voltage		V_{DD}		V	
Output voltage		V_P	-0.3 ~ 28	V	
Davis Dissipation (Ta. 35°C)	DD.	SOT 23	0.4	1 47	
Power Dissipation (Ta=25°C)	PD	SOT 89	0.7	W	
The word Desistance (On DCD To 25°C)	Б	SOT 23	300	°C /W	
Thermal Resistance (On PCB, Ta=25°C)	$R_{TH(j-a)}$	SOT 89	180	C / VV	
Operating temperature	T_{OPR}		-40~+85	°C	
Storage temperature	T _{STG}		-55~+150	°C	

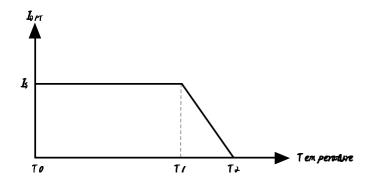

Electrical Characteristics and Recommended Operating Conditions

Characteristic	Symbol	Condition		Min.	Тур.	Max.	Unit
Supply voltage	V_{DD}	Room	Temp.	2.6	-	24	V
Supply current	I _{DD}	-		200	-	700	uA
Thomaslandon	-	Т	1	120	125	130	°C
Thermal protect	Т	Т	2	155	160	165	
Minimovino dinoncontrolto de	e V_{PNmin} $V_{DD} >= 5V$	V . 5V	I _{PN} =20mA	-	0.3	-	.,
Minimum dropout voltage		I _{PN} =60mA	-	0.35	-	V	
Output breakdown voltage	V_{PNBD}	I _{PN} = 0, V _{DD} = 0V		-	-	24	V
Output current	Is*2	Spec.		10	-	350	mA
Line regulation	%/V _{DD}	5V > V _{DD} > 24V		-	0.1	-	%/V
Load regulation	%/V _P	8V > V _P > 1.6V		-	0.1	-	%/V
Thermal regulation	%/10°C	$V_{DD} = V_P = 3V$		-	0.1	-	%/10°C
Chip current skew	I _{Skew}	-		-	-	±5	%


Switching Characteristics (T = 25°C)

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time Vppfrom "L" to "H"	t _{рLН}	$V_P=1V$, $V_{DD}=0V \rightarrow 5V$	1	-	2.2	uS
Output current rising time	t _{Rise}	$V_P=1V$, $V_{DD}=0V \rightarrow 5V$	1	-	2	uS
Propagation Delay Time V _{DD} from "H" to "L"	t _{рНL}	$V_P=1V$, $V_{DD}=5V \rightarrow 0V$	200	-	500	nS
Output current falling time	t _{Fall}	$V_P=1V$, $V_{DD}=5V \rightarrow 0V$	-	80	120	nS

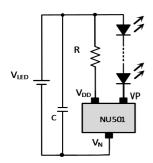

Test Circuit


Timing Waveform

I/V curve

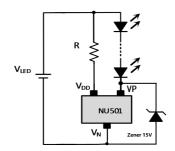
Thermal protection

State	Normal $(T0 \leftrightarrow T1)$	Thermal protect $(T1 \leftrightarrow T2)$	Unit
Temperature -40 ↔ 130		125 ↔ 160	°C
I_{PN} variation ± 0.1		-28	%/10°C

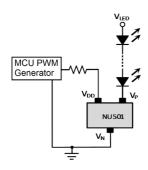

Application design consideration

NU501 is a linear constant current driver. While this device is designed in lighting system, the heat generation should be considered. Generally, the higher current designed in system, the higher power will suffer by this device. To reduce the power consuming by NU501 andto increase the whole system efficiency, the drop voltage across NU501 should be minimized. The following design note can reduce the heat generation from NU501 in the condition of keeping the required output constant current and the needed supply voltage (normal operation condition).

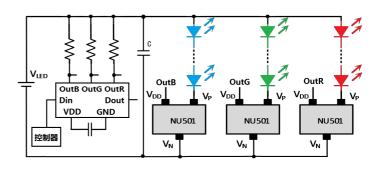
- 1. Drop the power supply voltage as low as possible in the normal operation condition.
- 2. Get the LEDs in current loop as many as possible in the normal operation condition.
- 3. Get a voltage sharing resistor in series in current loop.
- 4. If V_{pn} is greater than 8V, or Vin ≥30V, it is necessary to connect a zener diode between V_P and V_N pin for chip protection.


Application Circuits

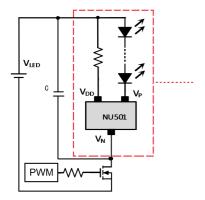
Basic lighting application 1


V _{LED} 电压	R值
12V	7.5kΩ
24V	15kΩ

Basic lighting application 2

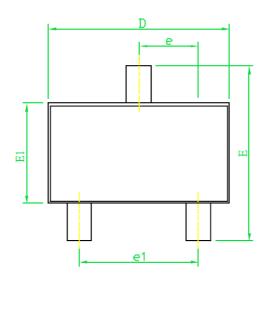


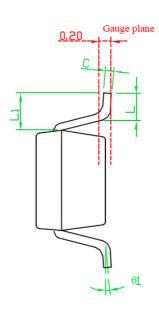
VLED 电压	R值	Zener 值
36V	36kΩ	15V
48V	47kΩ	15V

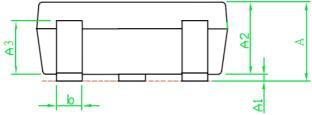

• PWM dimming application

V_{DD} pin dimming application

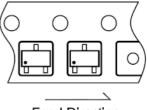
Controller I/O output current expansion application

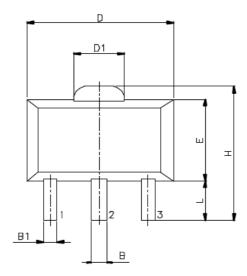


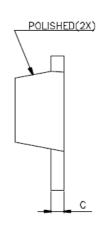

Power line dimming application

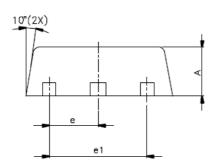

-5 - Ver. 11.06

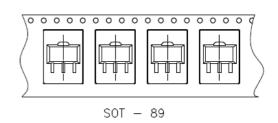
Package Dimensions


• SOT23-3L




SYMBOLS	DIMENSIONS IN MILLIMETERS		
SIMBOLS	MIN	NOM	MAX
A	1.00	1.10	1.40
A1	0.00		0.10
A2	1.00	1.10	1.30
A3	0.70	0.80	0.90
b	0.35	0.40	0.50
C	0.10	0.15	0.25
D	2.70	2.90	3.10
E1	1.40	1.60	1.80
e		0.95(TYP)	
e1		1.90(TYP)	
Е	2.60	2.80	3.00
L	0.37		
θ1	1°	5°	9°
L1	0.5	0.6	0.7




Feed Direction

• SOT89L

SYMBOLS	MIN.	MAX.	
Α	1.40	1.60	
В	0.44	0.56	
B1	0.36	0.48	
C	0.35	0.44	
D	4.40	4.60	
D1	1 <i>.</i> 35	1.83	
E	2.29	2.60	
Н	3.94	4.25	
е	1.50 BSC		
е1	3.00 BSC		
L	0.89	1.2	

UNIT: mm

-7- Ver. 11.06

Restrictions on product use

• NUMEN Tech. reserves the right to update these specifications in the future.

- The information contained herein is subject to change without notice.
- NUMEN Technology will continually working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing NUMEN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such NUMEN products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that NUMEN products are used within specified operating ranges as set forth in the most recent NUMEN products specifications.
- The NUMEN products listed in this document are intended for usage in general electronics applications (lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These NUMEN products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of NUMEN products listed in thisdocument shall be made at the customer's own risk.

- 8 - Ver. 11.06